DNA Quality Assessment for Array CGH by Isothermal Whole Genome Amplification

نویسندگان

  • Tineke E. Buffart
  • Marianne Tijssen
  • Thijs Krugers
  • Beatriz Carvalho
  • Serge J. Smeets
  • Ruud H. Brakenhoff
  • Heike Grabsch
  • Gerrit A. Meijer
  • Henry B. Sadowski
  • Bauke Ylstra
چکیده

BACKGROUND Array Comparative Genomic Hybridization (array CGH) is increasingly applied on DNA obtained from formalin-fixed paraffin-embedded (FFPE) tissue, but in a proportion of cases this type of DNA is unsuitable. Due to the high experimental costs of array CGH and unreliable methods for DNA quality testing, better prediction methods are needed. The aim of this study was to accurately determine the quality of FFPE DNA input in order to predict quality of array CGH outcome. MATERIAL AND METHODS DNA quality was assessed by isothermal amplification and compared to array CGH quality on 59 FFPE gastric cancer samples, one FFPE colorectal cancer sample, two FFPE normal uvula samples, one fresh frozen and six FFPE HNSCC samples. Gastric cancer DNA was also quality tested by beta-globin PCR. RESULTS Accurate prediction of DNA quality using the isothermal amplification was observed in the colorectal carcinoma, HNSCC and uvula samples. In gastric cancer samples, the isothermal amplification was a more accurate method for selecting good quality DNA for array CGH compared to using PCR product lengths. The isothermal amplification product was used for array CGH and compared to the results achieved using non-amplified DNA in four of the samples. DNAs before and after amplification yielded the same segmentation patterns of chromosomal copy number changes for both the fresh DNA sample and the FFPE samples. CONCLUSION The efficiency of isothermal DNA amplification is a reliable predictor for array CGH quality. The amplification product itself can be used for array CGH, even starting with FFPE derived DNA samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Array-based comparative genomic hybridization from formalin-fixed, paraffin-embedded breast tumors.

Identification of prognostic and predictive genomic markers requires long-term clinical follow-up of patients. Extraction of high-quality DNA from archived formalin-fixed, paraffin-embedded material is essential for such studies. Of particular importance is a robust reproducible method of whole genome amplification for small tissue samples. This is especially true for high-resolution analytical...

متن کامل

Oligonucleotide Array CGH Analysis of a Robust Whole Genome Amplification Method

In recent years, array-based Comparative Genomic Hybridization (aCGH) has been refined to determine chromosomal changes at progressively higher resolutions (1). This evolving technology is, however, somewhat hampered by the large DNA input requirement—a minimum of 150,000 copies of a human genome, or 0.5 μg, are generally needed per sample to process one CGH array. GenomePlex® Whole Genome Ampl...

متن کامل

A Robust Whole Genome Amplification Method for Agilent Array-based Comparative Genome Hybridization Analysis

Genomic instability is a classic hallmark of cancer and genetic disorders. The Agilent Oligonucleotide array-based Comparative Genomic Hybridization (aCGH) platform lets you profile DNA copy number variations on a highthroughput and genome-wide scale. We have developed a rapid, low-input whole genome amplification (WGA) method for aCGH analysis that pairs the Sigma GenomePlex WGA Kit with Agile...

متن کامل

P-243: Prenatal Diagnosis Using Array CGH: Case Presentation

Background: Karyotype analysis has been the standard and reliable procedure for prenatal cytogenetic diagnosis since the 1970s. However, the major limitation remains requirement for cell culture, resulting in a delay of as much as 14 days to get the test results.CGH array technology has proven to be useful in detecting causative genomic imbalances or genetic mutations in as many as 15% of child...

متن کامل

Genomic profiling by DNA amplification of laser capture microdissected tissues and array CGH.

Comparative genomic hybridization by means of BAC microarrays (array CGH) allows high-resolution profiling of copy-number aberrations in tumor DNA. However, specific genetic lesions associated with small but clinically relevant tumor areas may pass undetected due to intra-tumor heterogeneity and/or the presence of contaminating normal cells. Here, we show that the combination of laser capture m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007